Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and secondary damage in experimental spinal cord trauma.
نویسندگان
چکیده
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with stroke and neurotrauma. The aim of our study was to evaluate the therapeutic efficacy of in vivo inhibition of PARP in an experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration (measured as an increase in myeloperoxidase activity), and apoptosis (measured by terminal deoxynucleotidyltransferase-mediated UTP end labeling coloration). Infiltration of spinal cord tissue with neutrophils was associated with a marked increase in immunoreactivity for poly(ADP-ribose) (PAR), index of PARP activation, in the spinal cord tissue. These inflammatory events were associated with the activation of nuclear factor-kappaB (NF-kappaB) at 4 h after spinal cord damage. Treatment of the mice with the PARP inhibitors 3-aminobenzamide (3-AB) or 5-aminoisoquinolinone (5-AIQ) significantly reduced the degree of 1) spinal cord inflammation and tissue injury (histological score), 2) PAR formation, 3) neutrophil infiltration, and 4) apoptosis. Treatment with these PARP inhibitors also reduced DNA binding of NF-kappaB and inhibitory kappaB degradation. In a separate set of experiments, we have also demonstrated that PARP inhibitors significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with PARP inhibitors reduces the development of inflammation and tissue injury events associated with spinal cord trauma.
منابع مشابه
JPET # 76711 1 Inhibitors of poly ( ADP - ribose ) polymerase modulate signal transduction pathways and secondary damage in experimental spinal cord trauma
Poly(ADP-ribose) polymerase, (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with stroke and neurotrauma. The aim of our study was to evaluate the therapeutic efficacy of in vivo inhibition of PARP in an experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24 g) to the dura ...
متن کاملAnti-Inflammatory Effect of the Epigallocatechin Gallate Following Spinal Cord Trauma in Rat
Background: Spinal cord injury (SCI) stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effects of epigallocatechin gallate (EGCG) on traumatized spinal cord. Methods: Rats were randomly divided into four groups of 12 rats each as follow: sham-operated group, trauma group...
متن کاملAnti-Inflammatory Effect of Oleuropein in Experimental Rat Spinal Cord Trauma
BACKGROUND Spinal cord injury stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effect of oleuropein on traumatized spinal cord. METHODS Rats were randomly divided into four groups of 7 rats each as follows: Sham-operated group, trauma group, and oleuropein treatment g...
متن کاملPoly(ADP-ribose) glycohydrolase activity mediates post-traumatic inflammatory reaction after experimental spinal cord trauma.
The aim of the present study was to examine the role of poly-(ADP-ribose) glycohydrolase (PARG) on the modulation of the inflammatory response and tissue injury associated with neurotrauma. Spinal cord trauma was induced in wild-type (WT) mice by the application of vascular clips (force of 24 g) to the dura via a two-level T(6) to T(7) laminectomy. Spinal cord injury in WT mice resulted in seve...
متن کاملAnti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat.
BACKGROUND Spinal cord injury (SCI) stimulates an inflammatory reaction that causes substantial secondary damage inside the injured spinal tissue. The purpose of this study was to determine the anti-inflammatory effects of epigallocatechin gallate (EGCG) on traumatized spinal cord. METHODS Rats were randomly divided into four groups of 12 rats each as follow: sham-operated group, trauma group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 312 2 شماره
صفحات -
تاریخ انتشار 2005